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The O(n) Model on the Annulus

John Cardy1,2

Received April 24, 2006; accepted July 18, 2006
Published Online: August 8, 2006

We use Coulomb gas methods to derive an explicit form for the scaling limit of the par-
tition function of the critical O(n) model on an annulus, with free boundary conditions,
as a function of its modulus. This correctly takes into account the magnetic charge
asymmetry and the decoupling of the null states. It agrees with an earlier conjecture
based on Bethe ansatz and quantum group symmetry, and with all known results for
special values of n. It gives new formulae for percolation (the probability that a cluster
connects the two opposite boundaries) and for self-avoiding loops (the partition func-
tion for a single loop wrapping non-trivially around the annulus.) The limit n → 0 also
gives explicit examples of partition functions in logarithmic conformal field theory.

KEY WORDS: 2d critical behavior, conformal field theory, percolation, self-avoiding
walks

1. INTRODUCTION

The Coulomb gas approach to two-dimensional critical models which can be
written as loop gases, such as the O(n) model and Q-state Potts models, has
been extraordinarily successful in deriving their universal bulk properties. First
developed by den Nijs (1) and Nienhuis (2) in order to explain conjectured exact
values for the principal bulk critical exponents, it was adapted by di Francesco,
Saleur and Zuber (3) to compute the partition function on the torus, which encodes
all the bulk scaling dimensions. (4)

However, this particular approach has not, so far, been successfully adapted
to explain the conjectured exact values (5,6) for the boundary scaling dimensions
in these models, even though many of them have now been derived using other
methods (8) applied to related lattice models, and, more recently, rigorously using
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Schramm-Loewner evolution (SLE). (7) From the point of view of conformal field
theory (CFT), both the boundary and the bulk exponents are encoded in the
partition function on the annulus, (9) and therefore a direct computation of this
object is of great interest. From the point of view of CFT, general values of n and
Q give irrational non-unitary examples.

As we shall explain, the naive application of Coulomb gas methods to domains
with boundaries fails to account either for the reduction of the central charge c
from its free field value of unity, or for the elimination of the null states, which,
as is known from CFT, is necessary to maintain modular invariance. In this paper
we propose a resolution of these issues which provides an explicit formula for the
partition function on the annulus.

Consider an annulus (0 ≤ x < �, 0 < y < L), identifying x = 0, �. Intro-
duce the conjugate moduli

q = e−π�/L , q̃ = e−2π L/�.

Note that if the annulus is conformally mapped to the region R1 < r < R2 between
two circles, q̃ = ln(R2/R1). We impose free boundary conditions on the O(n)
spins on y = 0, L . As usual in the Coulomb gas, we introduce the parametrisation
n = √

Q = 2 cos χ , g = 1 − χ/π , where 1 ≤ g ≤ 2 corresponds to the dilute
critical point of the O(n) model (or the tricritical point of the Q-state Potts model),
and 1

2 ≤ g < 1 to the critical dense phase of the O(n) model (or the ordinary
critical point of the Potts model.) Then our main result for the annulus partition
function is

Z = q− c
24

∞∏

r=1

(1 − qr )−1
∑

p∈Z

sin(p + 1)χ

sin χ
q

g p2

4 − (1−g)p
2 . (1)

In terms of the conjugate modulus q̃ this becomes

Z = (2/g)1/2 q̃− c
12

∞∏

r=1

(1 − q̃2r )−1
∑

m∈Z

sin((χ + 2mπ )/g)

sin χ
q̃

(χ+2πm)2

2π2g
− (1−g)2

2g . (2)

This has the form expected from boundary conformal field theory(9): (1) is
Z = q−c/24

∑
� d�χ�(q), where � runs over the allowed set of boundary scaling

dimensions, χ�(q) is a highest weight Virasoro character, and d� is a degeneracy
factor, which is a polynomial in n (although only integer in those cases when the
theory is unitary). In this form the explicit expression (1) is not new, and indeed is
originally due to Saleur and Bauer, (8) who deduced the allowed scaling dimensions
from Bethe ansatz and quantum group arguments. In this context the degeneracy
factor d� is the quantum dimension. It has been used extensively in papers by
Saleur and Pasquier, (10) Saleur, (11) and more recently appeared in a paper by Read
and Saleur. (12) However, a direct derivation from the lattice O(n) model solely
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using Coulomb gas arguments has not appeared to our knowledge, and this is the
point of the present paper.

Note that (2) also has the form expected from boundary CFT, (9) namely
q̃−c/12

∑
� |b�|2χ�(q̃2) where now the sum is over allowed bulk scaling dimen-

sions 2�, and b� is a matrix element with a boundary state. In particular, for
� = 0 we have

b2
0 = −(2/g)1/2 sin(π/g)

sin πg
, (3)

which gives the boundary entropy(13) ln b0.
We have explicitly written the dependence on χ in Eqs. (1), (2) because, if

we wish to consider a modified partition function in which the loops which wrap
non-trivially around the annulus are counted with a different weight n′ = 2 cos χ ′,
it is simply necessary to replace χ → χ ′. This allows us to compute interesting
quantities for percolation and self-avoiding loops.

For example, in critical percolation (Q = 1) the probability that a cluster
connects the two boundaries of the annulus is

P =
∞∏

r=1

(1 − qr )−1
∑

k∈Z

(
q

8k2

3 − 2k
3 − q

8k2

3 +2k+ 1
3
)
. (4)

The partition function for a single self-avoiding loop which wraps non-
trivially around the annulus (the number of such loops weighted by µ−length, where
µ is the non-universal connective constant) is

Z1 =
∞∏

r=1

(1 − qr )−1
∑

k∈Z

k(−1)k−1 q
3k2

2 −k+ 1
8 . (5)

In the limit q̃ → 0, we find Z1 ∼ (1/6π )| ln q̃|. The form of this agrees with a
rigorous result of Werner. (14)

The layout of this paper is as follows. In Sec. 2 we give a brief survey of
Coulomb gas methods as applied in the plane and the cylinder, and then discuss
the particular problems associated with domains with boundaries, in particular the
annulus. This will lead to the proposal (1) for the partition function. As with most
Coulomb gas methods, this is not wholly deductive, but relies on some heuristic
reasoning. However, in Sec. 3, we show that (1) agrees with previously known
results for various special cases (for example the Ising model and the 3-state Potts
model.) In Sec. 4 we then derive a variety of new results, some of which have
already been mentioned above.
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2. COULOMB GAS ON THE CYLINDER AND THE ANNULUS

2.1. Basics

We first summarise the Coulomb gas arguments as applied to the plane and
cylinder, as formulated by de Nijs (1) and Nienhuis, (2) and elaborated by Kondev. (15)

The O(n) model is most easily realised on the honeycomb lattice. At each
site r is an n-component spin s(r ) (initially n is a positive integer.) The Boltzmann
weight for a given configuration is

∏

r,r ′
(1 + t s(r ) · s(r ′)), (6)

where the product is over all edges (r, r ′) of the lattice. The partition function is the
trace over these weights, a linear operation defined by Tr 1 = 1, Tr sa(r )sb(r ) = δab

and Tr sa(r ) = Tr sa(r )sb(r )sc(r ) = 0. Expanding (6) in powers of t gives a sum
over all subsets G of the edges, with an associated factor t |G|. Implementing the
trace operation eliminates all subgraphs which are not unions of non-intersecting
closed loops (for the time being we ignore boundaries), and each of these gets
counted with a weight n.

At this point we can allow n to be any positive real number. This gives a
measure on the allowed subgraphs G, called the loop gas. If t is small, the mean
loop length is finite, even in the thermodynamic limit, but there is a critical value
tc at which it first diverges. This is called the dilute critical point. For t > tc a
single loop contains a finite fraction of the sites: this is the dense phase.

The critical Q-state Potts model on the square lattice can also be written, via
the Fortuin-Kasteleyn(16) correspondence, in terms of a loop gas, in which each
closed loop carries a factor (2)

√
Q.

Both these loop gas models can be mapped to a model of heights h(R) on the
sites R of the dual lattice, by first orienting each loop, so that a configuration of N
non-oriented loops corresponds to 2N configurations of oriented loops, and then,
for each edge of the lattice, assigning height differences �h = 0,±π between the
neighbouring sites of the dual lattice according to whether the edge is contained in
the oriented subgraph G, and its orientation. The weight n (or

√
Q) for each non-

oriented loop is distributed into a factor e±iχ for each clockwise (anticlockwise)
oriented loop, where n = 2 cos χ . Although these weights are complex (a feature
which lies at the heart of the difficulties associated with a rigorous treatment of
the Coulomb gas approach), they have the advantage of being local, in the sense
that they may be distributed so that each loop acquires a factor eiθχ/2π whenever
it turns through an angle θ at a vertex.

However, it should be noted that, at least for the fully packed model on the
square lattice, there is a mapping to the 6-vertex model with positive Boltzmann
weights: at each vertex the two loops are either oriented parallel to each other,
with weight eiχ/4 · e−iχ/4 + e−iχ/4 · eiχ/4 = 2, or anti-parallel in which case the
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weight is

eiχ/4 · eiχ/4 + e−iχ/4 · e−iχ/4 = 2 cos(χ/2) = (n + 2)1/2.

The Coulomb gas method assumes that, in the continuum limit, the discrete
heights become continuous and the Boltzmann weights converge to e−S where S
is the action of a free field theory

S = (g/4π )
∫

(∂h)2 dxdy.

The original discrete model may be recovered from this by adding a term
λ

∑
R cos 2h(R) in the limit λ → −∞.
However, on a cylinder of length � and circumference L , with � 	 L , this

does not properly account for loops which wind around it: these can be taken into
account by placing ‘electric’ charges e±i(χ/π)h at either end. This modifies the
partition function to Z ∼ eπc�/6L , identifying the total central charge

c = 1 − 6
(χ/π )2

g
.

The scaling dimensions of electric charges eiqh are also modified if we put them
at the ends of the cylinder as well:

xq = (1/2g)((q + χ/π )2 − (χ/π )2).

Note that xq 
= x−q : this an example of the electric charge asymmetry introduced
by this construction.

g is fixed in terms of χ by requiring(15) that cos 2h be marginal in the sense
of the renormalisation group, i.e. x2 = 2. This fixes

g = 1 ± (χ/π ),

with the sign depending on whether we choose x2 or x−2. In fact this ambiguity
is to be expected: for each value of n, χ is only defined up to a sign (actually
we can add multiples of 2π as well, but these give less relevant operators) and
these correspond to the dilute (g > 1) and dense (g < 1) cases of the critical O(n)
model. In the following we take the lower sign by convention.

Note that these ideas are easy to extend to the partition function on the torus,
correctly taking into account loops which wrap around some combination of the
two cycles. (3)

Now consider the case of the annulus. Throughout this paper we assume free
boundary conditions on the O(n) spins, which means that there are only closed
loops in the loop gas representation. (Partial results using Coulomb gas methods
were found for the case of fixed boundary conditions in Ref. 17 for the special
case n = 1 in the dense phase.)
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First consider the case when � 	 L , where we expect

Z ∼ eπc�/24L ∼ q−c/24,

with c given as above. In this limit there is no contribution of loops wrapping
around the annulus, so we expect that that h(y = L) = h(y = 0). Naively then,
we get a free field theory with (equal) Dirichlet boundary conditions, which gives
c = 1.

Where does the correction to c come from? One (incorrect) possibility is as
follows: looking back at the lattice construction, we see that there are extra factors
of e±iχ/2 whenever a loop is next to the boundary, which are not properly taken
into account in the the bulk Boltzmann weights of the height model. The sign
is determined by whether the height at a site next to the boundary is ±π . In the
continuum limit these would lead to boundary terms in the action proportional to
iχ

∫
∂⊥h dl where ∂⊥ is along the inward pointing normal to the boundary and dl

is a line element. For the annulus these would give something proportional to

iχ

∫
(∂yh(x, y = 0) − ∂yh(x, y = L)) dx (7)

However, an explicit calculation (see Appendix) shows that such a combination
does not contribute to c. In fact, if we add to the action a general boundary term

∫
(α1∂yh(x, y = 0) + α2∂yh(x, y = L)) dx,

we find that the effective central charge is

c = 1 − (24/g)(α1 + α2)2.

Thus not only is there no contribution if α1 = −α2, as in (7), we must also have
α1 + α2 real, rather than pure imaginary.

An equivalent, and easier, way of getting the same modification to c is to
assume that the correct boundary conditions, even when � 	 L , are

h(y = L) − h(y = 0) = πm0 
= 0.

In that case we can write h = πm0 y/L + h̃, where h̃ vanishes on both y = 0 and
y = L . The functional integral over h̃ gives c = 1 as before, and the modification
to the partition function is ∼ exp(−(g/4π )(πm0)2�/L). So if we take

m0 = ±χ/πg, (8)

we get the correct c. Note that, for a long rectangular strip rather than an annulus,
this is like adding magnetic charges, or vortices, at the ends.

Thus it would appear that there should be a spontaneous average magnetic
flux around the annulus, if g 
= 1. This may be understood heuristically in terms of
the preferred parallel, rather than antiparallel, alignment of neighbouring loops:
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Fig. 1. The screening of magnetic flux in a long rectangle. If the background flux m is too large, vortex
pairs of strength ±2 can be shed from either end of the rectangle and will annihilate in order to reduce
the free energy. If m is too small, the opposite effect occurs.

this effect should be enhanced near a boundary, since loops are geometrically
constrained to lie approximately parallel or anti-parallel to the boundary.

The actual value of m0 may be fixed by the following argument. Consider
first the geometry of a long rectangle with � 	 L , where the loops are allowed
to end on the boundaries at x = 0, �, but, as before, not on y = 0, L . In that case
the total charge m flowing along the rectangle is not fixed, and we can ask the
question what is its mean value m0 in the state of lowest free energy. A flux m
corresponds to vortices of strengths ±m at the ends of the rectangle. However
this can increase or decrease in units of 2 by shedding vortices from either end of
the rectangle (see Fig. 1). The additional free energy for creating such a pair of
vortices is (g/4π )((m + 2)2 − m2)(π/L)2(�L) scaling dimension of a vortex of
strength ±2, from which we read off the scaling dimension

�2 = (g/4)((m + 2)2 − m2)

If m is too large, �2 > 1, which means that the corresponding renormalisation
group y2 = 1 − �2 < 0. (Note that since we are in the boundary, rather than the
bulk, situation, the eigenvalue is 1 − � rather than 2 − �.) This implies that such
±2 vortex pairs are closely bound. Thus any such pairs shed from the boundaries
at x = 0, � will annihilate to reduce their free energy. On the other hand, if m is
too small, y2 > 0, which means that any such vortex pairs will unbind. This will
act to increase the effective value of m.
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This screening effect implies that the mean value m0 of the magnetic flux
which minimises the free energy corresponds to y2 = 0, that is

(g/4)
(
(m0 + 2)2 − m2

0

) = 1,

so that

m0 = (1 − g)/g = χ/πg,

which is the same as found above in (8). There is a similar minimum free energy
solution with m = −m0. Note that the above argument is analogous to the earlier
argument which fixed g , where we demanded that electric ±2 charges should be
marginal.

If we now go the annulus, we expect a total average magnetic flux ±m0 to
spontaneously form, even when � 	 L . Now suppose that �/L is not so large, so we
can have extra loops wrapping around the x-cycle. We can orient these as before.
If the total number of up arrows minus down arrows (the additional magnetic flux
flowing along the annulus) is p, then we get h(y = L) − h(y = 0) = π (p ± m0).
As for the cylinder, in order to count them correctly we need to put in a factor
exp(i(p ± m0)χ ). Thus we get the following first guess for the partition function
on the annulus:

Z̃ = Z0

∑

p∈Z

ei(p+m0)χe−(g/4)(πp+m0)2(π�/L) + (m0 → −m0),

where Z0 = q−1/24
∏∞

r=1(1 − qr )−1 is the partition function from h̃. Note that we
should sum over both possible signs for m0. If we let p → −p in the first term
this simplifies to

Z̃ = q−c/24
∞∏

r=1

(1 − qr )−1
∑

p∈Z

cos((p − m0)χ ) q (g/4)p2−(1−g)p/2. (9)

Note that if we want to count loops wrapping around the annulus with a different
weight n′ = 2 cos χ ′, we just change χ → χ ′ in the above (keeping g the same.)

Equation (9) has some good features and some bad ones. In general we
expect that Z can be written as a sum of terms qh where h runs over all the allowed
scaling dimensions of the allowed boundary operators. (For a unitary theory the
coefficients should be non-negative integers, but this doesn’t have to hold for
general n.) We see in (9) for p = N ≥ 1 the scaling dimensions of the boundary
N -leg operators, as first conjectured by Saleur and Duplantier. (6)

However, for the dilute case with g > 1, p = −1 actually gives the next-to-
leading term as q → 0. This doesn’t make sense: we expect this to come from p =
N = 1. More seriously, (9) fails to account for the fact that the scaling dimensions
of the boundary N -leg operators correspond to those of the degenerate cases h1,N+1

of the Kac table: in general these operators correspond to highest weight states
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whose Virasoro representations are reducible: they have a null descendent state
(which corresponds to a term in the expansion of

∏
r (1 − qr )−1) of dimension

h1,N+1 + N + 1. For a unitary theory, or more generally a minimal model, we
know that such states (and all their descendents) should be subtracted out of the
partition function. For a non-unitary theory this is not necessary: however we shall
show later that if they are retained, the behaviour as q̃ → 0 is incorrect. This leads
to the conclusion that each term in (9) should be modified according to

q (g/4)p2−(1−g)p/2 → q (g/4)p2−(1−g)p/2 (1 − q p+1) = qh1,p+1 − qh1,−p−1 .

Note that this has the feature of automatically eliminating the ‘rogue’ state at
p = −1.

We now give a physical argument for this subtraction. Once again it is useful to
think about the rectangle geometry where magnetic flux can be created or destroyed
at the boundaries at x = 0, �. It is also useful to think in terms of the energy
eigenstates of the hamiltonian (π/L)(L0 − c/24) which generates translations in
x . In general, each configuration with total magnetic flux p will be accompanied
by excitations of the h̃ field, which correspond to the Virasoro descendents. If the
energy of these is correct they can resonate with the original highest weight state
plus a number of pairs of marginally bound ±2 magnetic charges, each of which
has energy π/L . If the excitation energy is (p + 1)π/L , exactly p + 1 vortex pairs
can be shed from the boundaries at x = 0, � (see Fig. 2). These states, however, are
identical to those with total magnetic charge p − 2(p + 1) = −2 − p, and should
therefore not be doubly counted.

The effect of this subtraction is therefore to modify the sum in (1) to
∑

p∈Z

cos((p − m0)χ )
(
qh1,p+1 − qh1,−p−1

)
.

Relabelling p → −2 − p in the second term has the effect of modifying

cos((p − m0)χ ) → cos((p − m0)χ ) − cos((p + 2 + m0))χ ) ∝ sin((p + 1)χ ),

which finally leads to the conjecture (1) for the annulus partition function, after
normalising so that the coefficient of the p = 0 term (the contribution of the
identity operator) is unity:

Z = q− c
24

∞∏

r=1

(1 − qr )−1
∑

p∈Z

sin(p + 1)χ

sin χ
q

g p2

4 − (1−g)p
2 .

Note that all the coefficients in (1) are polynomials in n = 2 cos χ as we
expect. For p = 1 we get exactly n (the degeneracy factor for a single loop
wrapping around the annulus), for p = 2 we get n2 − 1, and so on.
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Fig. 2. Mechanism for the appearance of null states. In this example, an excited state in the p = 1
sector has just sufficient energy 2π/L to allow two marginally bound pairs of ±2 vortices to form.
These can then move to the ends of the rectangle, and one of them can then annihilate with the original
flux line. The state is therefore equivalent to the ground state in the p = −3 sector, which has already
been counted in (9) and which therefore must be subtracted off.

2.2. Modular Properties

Now we express (1) (for general χ ′) in terms of the conjugate modulus
q̃ = e−2π L/�. Setting q = e−δ we have

Z = Z0 q
1−c
24 (sin χ ′)−1Im eiχ ′ ∑

p

eipχ ′
e−δ( g p2

4 − (1−g)p
2 ).

Using the Poisson sum formula
∑

p → ∑
m

∫
dp e2π imp, the integral is

∫
e− δg p2

4 +[ (1−g)δ
2 +iχ ′+2π im]pdp

= (4π/δg)1/2e− 1
δg [χ ′+2πm−i (1−g)δ

2 ]2

= (4π/δg)1/2e− 1
δg (χ ′+2πm)2+i(χ ′+2πm) (1−g)

g + (1−g)2δ

2g .

The last term in the exponential cancels the q (1−c)/24. Under a modular transfor-
mation

Z0 = (δ/2π )1/2q̃− 1
12

∏

r

(1 − q̃2r )−1,
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so we end up with

Z = (2/g)1/2q̃− c
12

∏

r

(1 − q̃2r )−1
∑

m

sin((2mχ + χ ′)/g)

sin χ ′ q̃
(χ ′+2πm)2−χ2

2π2g ,

which finally simplifies to (2). Note that if we had not subtracted off the null states,
as in (9), we would find Z̃ ∼ q̃−1/12 rather than q̃−c/12. This is an example of how
the null state subtraction is necessary to maintain the correct modular properties. (4)

The leading term as q̃ → 0, with m = 0, agrees with the exponent found in
Ref. 18 for the case of loops wrapping around a long cylinder counted with weight
n′ = 2 cos χ ′. We now have also the prefactor:

Z ∼ (2/g)1/2 sin(χ ′/g)

sin χ ′ q̃
χ ′2−χ2

2π2g . (10)

If we set χ ′ = χ , the other exponents in (2) are those of even electric charge
operators x2m . For general g these are not in the Kac table, consistent with the
fact that there is no explicit substraction of null states in (2), so the characters are
simply given by the infinite product.

We now check (1) against some known cases.

3. COMPARISON WITH KNOWN RESULTS

3.1. n = 0 in the Dilute Regime

In this case g = 3/2, χ = −π/2, for which we expect Z = 1, since loops
wrapping round the annulus should all get a weight n = 0. (1) gives

Z =
∏

r

(1 − qr )−1
∑

p

sin((p + 1)π/2) q
3p2

8 + p
4 .

The prefactor is +1 if p ≡ 0 (mod 4), −1 if p ≡ 2 (mod 4), and zero other-
wise. After a little algebra we get

Z =
∑

k∈Z
(q6k2+k − q6k2+5mk+1)∏

r (1 − qr )
.

This is identically equal to 1 by Euler’s pentagonal identity.

3.2. n = 1, Dilute Phase

This should correspond to the unitary CFT which describes the scaling limit
of the critical Ising model. Now χ = −π/3, g = 4/3. The numerator in (1) is

∑

p

sin (p+1)π
3

sin π
3

q
p2

3 + p
6 .
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Now

p = 6kgives q12k2+k

p = 6k − 2 : −q12k2−7k+1

p = 6k + 1 : q12k2+5k+ 1
2

p = 6k + 3 : −q12k2+13k+ 7
2 .

Using the Rocha–Caridi character formula (19)

χr,s(q) =
∏

r

(1 − qr )−1
∑

k∈Z

(
q

(24k+4r−3s)2−1
48 − {s → −s}

)
,

for the case c = 1
2 , we see that the first 2 terms give χ1,1 and the second pair give

χ1,3. This then agrees with the result (9) for the Ising model with free boundary
conditions

Z = χ1,1 + χ1,3.

Alternatively we can look at the dual spins, which are fixed on the boundary. If
they are fixed into the same state on both boundaries we must have p even, so that
Z = χ1,1, and if they are fixed into opposite states p must be odd, so Z = χ1,3.
These also agree with Ref. 9.

3.3. n = 2

In this case χ = 0 and g = 1, so sin(p + 1)χ/ sin χ → p + 1. The numerator
in (1) becomes

∑

p

(p + 1)q
p2

4 =
∑

p∈Z

q
p2

4 .

This agrees with the interpretation as the XY model at the Kosterlitz-Thouless
transition: the terms with p 
= 0 correspond to a total vorticity ±p along the
annulus.

3.4. Q = 3 Potts Model

Now χ = π/6 and g = 5
6 . The numerator in (1) is

∑

p

sin((p + 1)π/6)

sin π/6
q

5p2

24 − p
12 .
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If we take free boundary conditions on both boundaries we should restrict p to be
even. Then

p = 12k : q30k2−k

p = 12k + 2 : 2q30k2+9k+ 2
3

p = 12k + 4 : q30k2+19k+3

p = 12k + 6 : −q30k2+29k+7

p = 12k − 4 : −2q30k2−21k+ f rac113

p = 12k − 2 : −q30k2−11k+1.

These pair up as follows: ((1, 6), (2, 5), (3, 4)) to give

Z = χ1,1 + 2χ1,3 + χ1,5,

which agrees with Ref. 9.
Note that if we choose free boundary conditions on one edge and fixed on the

other, p is restricted to be odd, and the leading term as q → 0 comes from p = 1,
and is

Z ∼
√

3 q
1
8 .

The
√

3 is to be expected, because in the Fortuin-Kasteleyn representation each
closed loop carries a factor

√
Q.

3.5. n = Q = 1, Dense Phase

In this case χ = π/3, g = 2/3. The numerator in (1) is

∑

p

sin((p + 1)π/3)

sin(π/3)
q

p2

6 − p
6 .

We get a non-zero contribution in the following cases:

p = 6r : q6r2−r

p = 6r − 2 : −q6r2−5r+1

p = 6r + 1 : q6r2+r

p = 6r + 3 : −q6r2+5r+1.

Using Euler’s identity again we see that Z = 2, consistent with the dual interpre-
tation as the Ising model at zero temperature. (The factor 2 is due to the global
spin reversal.) On the other hand this model can be interpreted as the Q = 1 Potts
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model (percolation). Choosing the sites on both boundaries to be in the same Potts
state enforces p to be even, and then we get Z = 1 as expected.

3.6. n = Q = 0, Dense Phase

Now χ = π/2, g = 1
2 . The numerator in (1) is

∑

p

sin(p + 1)π/2 q
p2

8 − p
4 ,

so p is even. For

p = 4k : q2k2−k

p = 4k + 2 : −q2k2+k,

so

Z =
∑

k

(
q2k2−k − q2k2+k

) = 0.

This is correct, since in this case there is just one macroscopic loop (or spanning
tree) which is counted with weight n = 0.

4. SOME NEW RESULTS

4.1. Percolation

By setting cos χ = 0 in (1) with g = 2
3 we suppress all other contributions

with a non-zero number of loops wrapping around the annulus. In terms of per-
colation, this happens if and only if there exists a cluster connecting the two
boundaries. This crossing probability is therefore

P =
∞∏

r=1

(1 − qr )−1
∑

p

sin((p + 1)π/2) q
p2

6 − p
6

=
∞∏

r=1

(1 − qr )−1
∑

k∈Z

(
q

8k2

3 − 2k
3 − q

8k2

3 +2k+ 1
3
)
,

so that 1 − P ∼ q1/3 as q → 0. Using the Jacobi triple product formula this can
be written in terms of the Dedekind function η(τ ) ≡ q1/24

∏∞
r=1(1 − qr ) with

q = e−2π i/τ as

P = η(−1/3τ )η(−4/3τ )

η(−1/τ )η(−2/3η)
= (3/2)1/2 η(3τ )η(3τ/4)

η(τ )η(3η/2)
.
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In the opposite limit, using (11) or the above, we have

P ∼ (3/2)1/2 q̃
5

48 ,

as q̃ → 0, which is the well-known ‘magnetic’ exponent (1) for the Q = 1 Potts
model (also known as the 1-arm exponent (20) in the SLE literature.) Note that this
result is different from, and much larger than, the result found in Ref. 17. This is
because in that paper crossing clusters which also wrap around the annulus were
disallowed. It would be interesting to compare the above result with the implicit
formula derived by Dubédat (21) using SLE methods.

Note that, in principle, one can solve for eiχ ′
as a function of n′ and substitute

in (1), hence obtaining the complete generating function for the probabilities that
a given number of clusters wrap around the annulus.

4.2. Self-Avoiding Loop: Dilute Case

If we take the O(n′) term in (1) with g = 3
2 we obtain the partition function

Z1 for a single self-avoiding loop which wraps around the annulus. From (1) we
need

∂

∂n′
sin((p + 1)χ ′)

sin χ ′

∣∣∣∣
χ ′=−π/2

= −1

2
(p + 1) cos((p + 1)π/2).

So we get a non-zero result only when p is odd, say p = 2k − 1, whence, after a
little algebra,

Z1 =
∞∏

r=1

(1 − qr )−1
∑

k

k ∈ Zk(−1)k−1 q
3k2

2 −k+ 1
8 . (11)

The leading behaviour as q → 0 comes from k = 1 and is

Z1 ∼ q
5
8 ,

as expected.
In the opposite limit we can use (10). In this case the leading behaviour comes

from differentiating the exponent:

Z1 ∼ 1

2
(2/g)1/2 sin(χ/g)

sin χ

χ

gπ2
ln q̃ = 1

6π
| ln q̃|.

If the annulus is mapped into the region between two circles radii r1 and r2 > r1,
the last factor is just ln(r2/r1).
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4.3. Self-Avoiding Loop: Dense Phase

In this case

Z1 = −q−c/24
∏

(1 − qr )−1
∑

p

p + 1

2
cos((p + 1)π/2) q

p2

8 − p
4 .

If we let p → 2 − p we get the same expression except (p + 1) → (3 − p). So
the sum is

−
∑

p

cos((p + 1)π/2) q
p2

8 − p
4 ,

and finally (since c = −2)

Z1 = q1/12
∏

r

(1 − qr )−1
∑

k

(
q2k2− 1

8 − q2k2−2k+ 3
8
)
.

Using the Jacobi triple product formula this can be rewritten as

Z1 = q− 1
24

∞∏

m=1

(
1 − qm− 1

2
)2

.

The leading term as q → 0 is

Z1 ∼ q− 1
24 .

This is reasonable since the loop is weighted by a factor µ−length so the contribution
grows exponentially with �.

4.4. Logarithmic Cases

Logarithmic CFTs have been studied for some time, although the question of
how they satisfy modular invariance has not been resolved in general. (22) The limit
n → 0 of the O(n) model affords an example in both the dilute and dense regimes;
other examples have been discussed in Ref. 12. If we differentiate the whole
expression for Z wrt n at n = 0, we get 3 kinds of contribution: the first comes
from differentiating wrt χ ′: this gives the partition function for loops wrapping
round the annulus as found above, and is a regular series in q. The second comes
from differentiating q−c/24 and gives −(c′(0)/24) ln q times the usual partition
function at n = 0. The third comes from differentiating the exponents: using

∂

∂g

(
g p2

4
+ (g − 1)p

2

)
= p2

4
+ p

2
,
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the result, in the dilute case when g = 3
2 , is proportional to

(ln q)
∑

p

(p2 + 2p) sin((p + 1)π/2) q
3p2

8 + p
4 .

As before, the only contributions come from p even, and proceeding as before we
get

ln q
∑

k

(
k(2k + 1)q6k2+k − k(2k − 1)q6k2−5k+1

)
,

or

Z log ∝ ln q
∑

k

k(2k + 1)
(
q6k2+k − q6k2+5k+1

)
.

Note that we still get the null state structure in this logarithmic sector.
In the dense phase, the partition function vanishes. The non-logarithmic terms

have already been evaluated. The logarithmic term is very similar to the above:

ln q
∑

k

(
k(2k + 1)q2k2+k − k(2k − 1)q2k2−3k+1

)
,

or

Z log ∝ ln q
∑

k

k(2k + 1)
(
q2k2+k − q2k2+3k+1

)
.

once again showing the null states. The leading term as q → 0 gives the contri-
bution of single dense loops (or spanning trees) which do not wrap around the
annulus: note that this is much smaller than the O(q−1/24) contribution from those
which do.

5. SUMMARY AND FURTHER REMARKS

In this paper we have presented an explicit result for scaling limit of the
partition function of the critical O(n) and Q-state Potts models on the annulus.
Our formalism makes it simple to count loops which wrap around the annulus
with different weights, leading potentially to many new formula for crossing
probabilities in percolation and for self-avoiding loops, some of which have been
presented here.

The electric-magnetic dual of our arguments for a long (� 	 L) annulus can
in fact be applied to a long (L 	 �) cylinder, to give an alternative derivation of the
usual relation between g, χ and n. For a long annulus we argued that ±2 magnetic
charges (vortices) would rearrange themselves in such a way as to induce mean
magnetic charges ±m0 = ±(1 − g)/g at the ends of a long rectangle, leading to
a net magnetic flux around the annulus. For a long cylinder, one may similarly
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argue that the ±2 electric charges in the model also rearrange themselves to give
net electric charges ±e0 = ±(1 − g) at either end. These can then be interpreted
as counting loops going around the cylinder with the weight n = 2 cos πe0.

Like all Coulomb gas methods, however, the arguments are somewhat heuris-
tic, although they lead to completely explicit formulae, and, because of the complex
weights, it seems hard to make them rigorous. In particular, although we have com-
puted the partition function, it is by no means clear that the same ensemble can
be used to compute correlation functions in the original model. It would be nice
to see a direct connection with the other ‘Coulomb gas’ approach which has been
employed in CFT, namely that originally developed by Dotsenko and Fateev. (23)

This is essentially a way of constructing holomorphic conformal blocks using
modified free field theory. However, it has many features in common with the
Coulomb gas construction used here: the background charge m0, and the marginal
screening operators, which in our case are the ±2 vortices. In the bulk, it is still
necessary, in the Dotsenko-Fateev approach, to sew together the holomorphic and
anti-holomorphic blocks in a consistent way to obtain correlation functions, but in
boundary CFT the correlation functions are linear combinations of the conformal
blocks (specialised to real values of their arguments), and so the correpondence be-
tween the two approaches should be more direct. It would, of course, be important
to establish any of these results rigorously, for example by using SLE methods.
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A. BOUNDARY TERMS IN THE GAUSSIAN MODEL

Consider the action

S = S0 + S1 = g
4π

∫
(∇h)2dxdy + α1

∫
∂yh(x, y = 0) dx

+α2

∫
∂yh(x, y = L) dx .

We wish to compute the regularised free energy, or equivalently the ground state
energy E0 of the associated hamiltonian. Let

h(x, y) =
∞∑

n=1

fn(x)

(gL/4π )1/2
sin

nπy

L
.
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Then

S0 =
∫

dx
∑

n

(
1

2
ḟ 2
n + 1

2
(nπ/L)2 f 2

n

)
,

from which we read off the ground state energy

E0 = 1

2

∑

n

ω(nπ/L),

where ω(k) = k. We can regularise this sum either by modifying the dispersion
relation (eg using a lattice, in which case ω(k) = 2 sin(k/2)) and using the Euler-
Maclaurin formula, or using zeta-function, in which case we get the standard
result

E0 = π

2L
ζ (−1) = − π

24L
,

corresponding to c = 1.
Now add in

S1 = (4π/gL)1/2
∑

n

(nπ/L)(α1 + (−1)nα2) fn.

Completing the square, the contribution of the nth mode can be written

1

2
((nπ/L) fn + (4π/gL)1/2(α1 + (−1)nα2))2 − 2π

gL
(α1 + (−1)nα2)2,

so the change in the ground state energy is

E1 = −(2π/gL)

(
∑

nodd

(α1 − α2)2 +
∑

neven

(α1 + α2)2

)
.

If we use zeta function regularisation we have
∑

nodd

1 = lim
s→0

( ∑

n

n−s −
∑

n

(2n)−s
)

= lim
s→0

(1 − 2−s)ζ (s) = 0

∑

neven

1 = lim
s→0

∑

n

(2n)−s = ζ (0) = −1

2
,

so

E1 = π

gL
(α1 + α2)2. (1)

If we use a lattice dispersion relation and also replace the boundary derivatives by
finite differences, the sum becomes

L−1∑

n=1

(α1 + (−1)nα2)2

cos2(nπ/2L)
,
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on which we use the formulae

∑

nodd

f (n/L) = 1

2
L

∫ 1

0
f (x) dx + O(L−2),

∑

neven

f (n/L) = 1

2
L

∫ 1

0
f (x) dx − 1

2L
f (0) + O(L−2),

giving the same result. It can also be verified by writing, for a general position
dependent α

Z = Z0

〈
exp

(∫
α(l)∂⊥h(l)dl

)〉
= Z0 exp

(
1

2

∫∫
α(l)α(l ′)∂⊥∂ ′

⊥G(l, l ′)dldl ′
)

,

where G is the Green’s function for the free field with Dirichlet boundary condi-
tions.

(2) leads to a modification to the effective central charge

c = 1 − 24

g
(α1 + α2)2,

as claimed in Sec. 2.
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